- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Flores-Flores, Marycruz (2)
-
Alber, Mark (1)
-
Chen, Weitao (1)
-
Damatac, Amor (1)
-
Davidson, Phillip L (1)
-
Estermann, Martin Andres (1)
-
Goldstein, Bob (1)
-
Harry, Clayton J (1)
-
Hibshman, Jonathan D (1)
-
Holmes, Caroline M (1)
-
Kumar, Nilay (1)
-
Legere, Elizabeth-Ann (1)
-
Leyhr, Jake (1)
-
Lázaro, Jorge (1)
-
Mim, Mayesha Sahir (1)
-
Rangel Ambriz, Jennifer (1)
-
Thendral, Siddharthan Balachandar (1)
-
Tsai, Kevin (1)
-
Vincent, Bridget A (1)
-
Zartman, Jeremiah J. (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Tardigrades are microscopic organisms with exceptional resilience to environmental extremes. Most protocols to visualize the internal anatomy of tardigrades rely on fixation, hampering our understanding of dynamic changes to organelles and other subcellular components. Here, we provide protocols for staining live tardigrade adults and other postembryonic stages, facilitating real-time visualization of structures including lipid droplets, mitochondria, lysosomes, and DNA.more » « less
-
Kumar, Nilay; Rangel Ambriz, Jennifer; Tsai, Kevin; Mim, Mayesha Sahir; Flores-Flores, Marycruz; Chen, Weitao; Zartman, Jeremiah J.; Alber, Mark (, Nature Communications)Abstract How a developing organ robustly coordinates the cellular mechanics and growth to reach a final size and shape remains poorly understood. Through iterations between experiments and model simulations that include a mechanistic description of interkinetic nuclear migration, we show that the local curvature, height, and nuclear positioning of cells in theDrosophilawing imaginal disc are defined by the concurrent patterning of actomyosin contractility, cell-ECM adhesion, ECM stiffness, and interfacial membrane tension. We show that increasing cell proliferation via different growth-promoting pathways results in two distinct phenotypes. Triggering proliferation through insulin signaling increases basal curvature, but an increase in growth through Dpp signaling and Myc causes tissue flattening. These distinct phenotypic outcomes arise from differences in how each growth pathway regulates the cellular cytoskeleton, including contractility and cell-ECM adhesion. The coupled regulation of proliferation and cytoskeletal regulators is a general strategy to meet the multiple context-dependent criteria defining tissue morphogenesis.more » « less
An official website of the United States government
